Principles of Soil Health Management

John Idowu

Extension Agronomist, New Mexico State University April 24th, 2014

Extension Plant Sciences Online Training Series

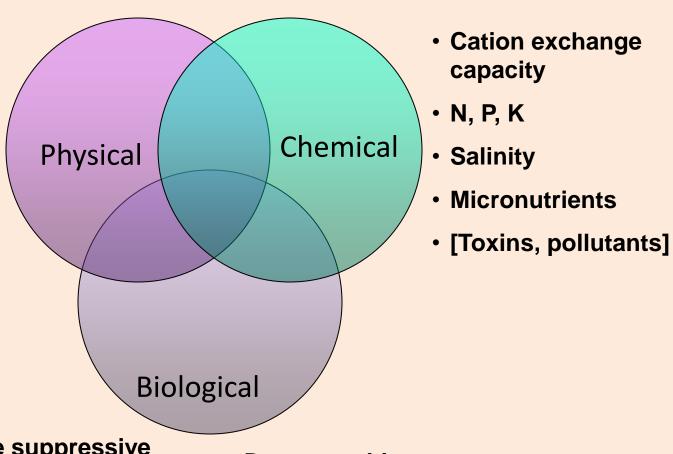
Contact: John Idowu Email: jidowu@nmsu.edu Phone: 575-646-2571

Presentation Contents

- What do we mean by "Soil Health"
- Why is soil health important
- Soil health issues on farms
- Some strategies for overcoming soil health constraints

What is Soil Health (Quality)?

- Ability of the soil to support crop growth ... (Power & Myers, 1989)
- Capacity of the soil to function in a productive and sustained manner ... (NCR-59 Madison WI, 1991)
- The capability of the soil to produce safe and nutritious crop (Parr et al., 1992)
- Fitness for use (Pierce & Larson 1993)


Approach to Soil Health Soil Health Chemical Biological Physical

Soil Health Indicators

Bulk density

- Penetration resistance
- Aggregate stability
- Water infiltration rate
- Water holding capacity
- Pore size distribution

- Soil disease suppressive capacity
- Beneficial and pathogenic nematodes, [other pathogens]
- N mineralization rate (PMN)

Decomposition rate

capacity

- Respiration rate
- Earthworm counts
- % OM
- "Active" C, N in OM

Physical issues

- Poor aggregation how well the soil binds together
- Low water Retention how much water the soil can retain
- Field compaction how tightly the soil is packed together

Aggregation

Affects

- Soil erosion by water and wind
- Pore size distribution (water movement/retention)
- Drought tolerance of soils
- Root growth and proliferation
- Soil aeration

Aggregation as a function of soil management

Low water retention

Affects

Plant water availability

Susceptibility to drought

Reduced yield of crops

Soil water relationships

Micropores full;

macropores have air Adhesion water Macropores All pores drained drained **Field Capacity** Wilting point All pores full

Saturated Soil

Soil water availability – Available Water Capacity

 Available Water Capacity (AWC) – the difference between the water held at field capacity and the permanent wilting point

-AWC = FC - PWP

AWC is mostly soil dependent

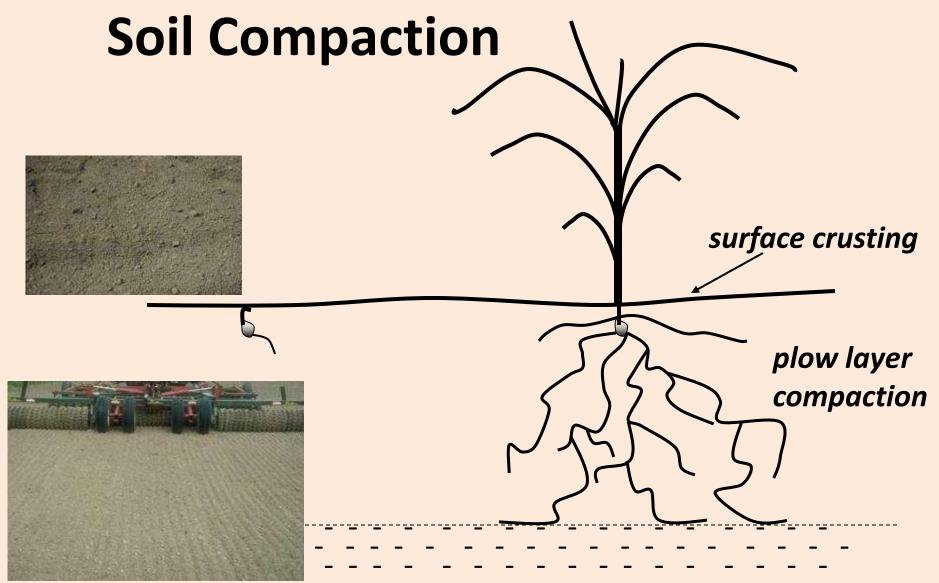
Soil water availability – Plant Available Water Capacity

- Plant Available Water Capacity (PAWC) the amount of water available for the growth of a crop
 - Often less than the AWC
 - It is soil dependent(Organic Matter Important)
 - Some crops can survive in drier soil than others
 - PAWC may vary for different crops in the same soil

Compaction

Affects

Water movement


- Water holding capacity
- Root growth and proliferation
- Soil aeration

Roots in loose or compacted soil

Subsoil compaction

How compaction occurs

Damage is greatestwhen soils are wetwhen loads are high

Compaction Prevention

- Avoid tillage of wet soils
- Use wider tires, dual tires
- Maintain minimum tire inflation
- Avoid over-sized equipment
- Combine field operations
- Add organic matter to the soil
- Practice controlled traffic

Chemical aspects of soil health

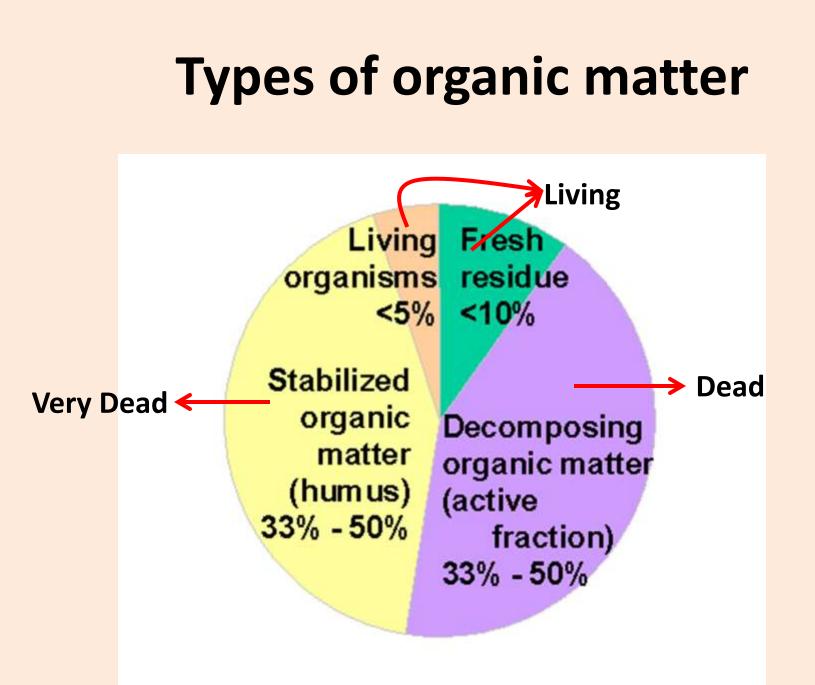
-Nutrient sufficiency

-Soil salinity levels/Sodium issues

-Water salinity levels

Resolving Chemical Issues

Soil Testing is Important !!!


- Helps to know what is in your soil
- Helps to plan how much of nutrients to apply
- Nutrient needs vary with soil and crop
- Helps to know if your soil is building up salts
- Will let you know if your management is improving,
 degrading or maintaining your soil

Biological aspects of soil health

- -Amount Soil Organic Matter
- -Soil Microbial Activity
- -Diversity of Flora and Fauna
- -Soil Nitrogen Mineralization
- -Organic Matter Decomposition
- -Soil Borne Pathogens

Organic Matter

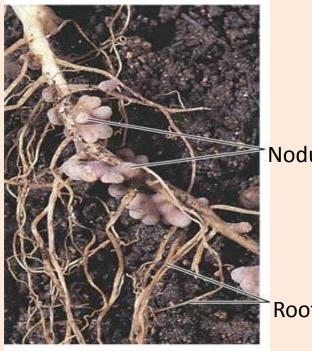
organisms of various sizes such as bacteria, fungi, nematodes, earthworms, mites, springtails, moles, etc.

plant roots

Soil Organisms

In one teaspoon of soil

•	Bacteria	100 million to 1 billion		
•	Fungi	6-9 ft fungal strands put end to end		
•	Protozoa	Several thousand flagellates & amoeba One to several hundred ciliates		
•	Nematodes	10 to 20 bacterial feeders and a few fungal feeders		
•	Arthropods	Up to 100		
•	Earthworms	5 or more		



Healthy soils maintain a diverse community of soil organisms that:

- Suppress plant disease, and insect and weed pests;
- Form beneficial symbiotic associations with plant roots
 - Mycorrhizae, Rhizobium
- Recycle essential plant nutrients
- Improve soil structure for water and nutrient retention
- Ultimately, increase grower profits and protect the environment

Nitrogen Fixation Through Legumes (making nitrate-N available to crops)

Nodules

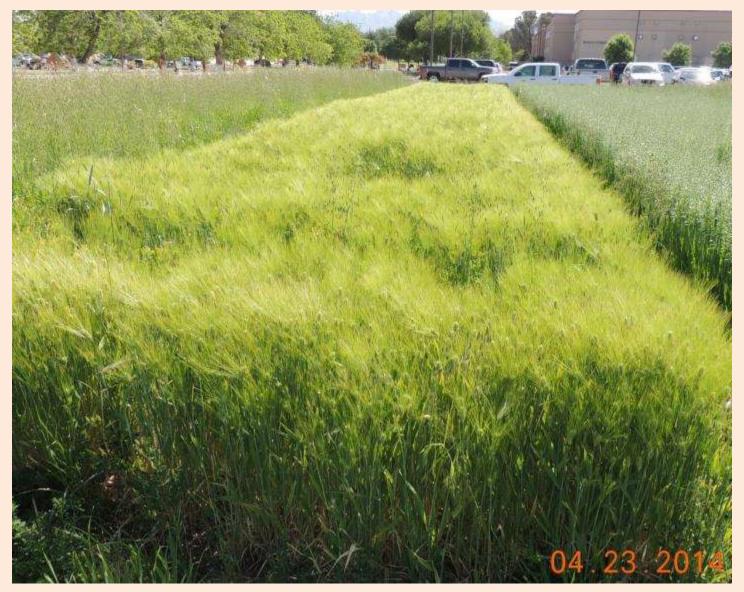
Roots

Symbiotic = up to 270 lb N/ac/year Non-symbiotic = up to 20 lbs N/ac/year

- Examples of legumes are alfalfa, clovers, beans
- Bacteria that make nitrate in plant roots with plants are called Rhizobium
- Nitrogen come from the soil air (79% N, in soil)
- It is a relationship of give and take
- Plants supply bacteria with food and bacteria gives back nitrate to plants

Sesbania Nodules

 Sesbania used as green manure in an organic rotation experiment


Potential of legumes to add N to Soil

Cover Crop	C:N	Nitrogen (Ib N/ac)	Biomass (t/ac)			
Sesbania	25	248	7.3			
Cowpea I&C	15	221	3.7			
Lablab	14	192	3.3			
Cowpea CA	12	182	2.7			
Cowpea CC36	18	150	2.9			
Bush bean	10	146	1.9			
Pigeon Pea	10	131	1.6			
Guar Durga	15	124	2.3			
Tepary Bean	14	120	2.0			
Lima Bean	12	119	1.8			
Green Bean	15	82	1.5			
Guar Evergreen	18	79	1.6			
Mung Bean	21	70	1.8			
Adzuki Bean	11	70	1.0			
Moth Bean	15	69	1.3			
Summer green legume experiment conducted in Las Cruces, NM						

under irrigated system

Barley after sesbania summer legume

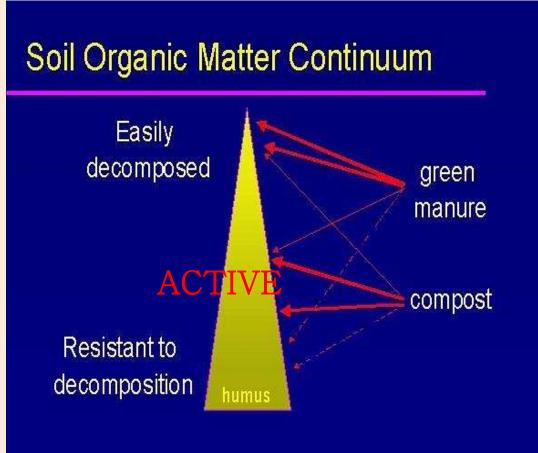
Oats after sesbania summer legume

Wheat after sesbania summer legume

Rye after sesbania summer legume

Organic Matter - Active Fraction

-Dead -

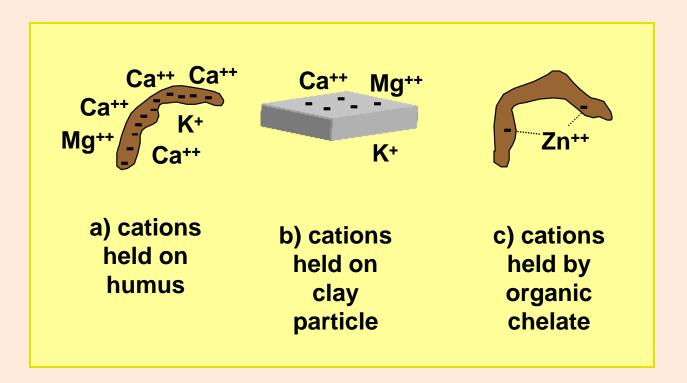

Recently dead soil organisms and crop residues provide the food (energy and nutrients) for soil organisms to live and function. Also called "active" or "particulate" organic matter.

Active Fraction

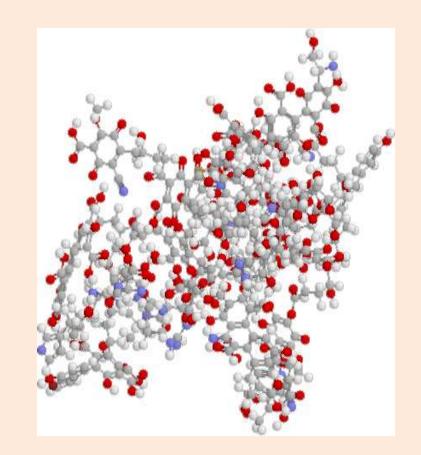
- 10 to 30% of the soil

 organic matter (active
 fraction) is responsible
 for maintaining soil
 microorganisms.
- The active fraction of organic matter is most susceptible to soil management practices.

Organic Matter —Very Dead —


Well decomposed organic → Humus Humus contains very high amounts of negative charge

Stable Organic Matter -Humus


 Cation nutrients are held on negatively charged organic matter and clay

Stable Organic Matter - Humus

- Over time, soil organic compounds become stabilized and resistant to further changes by microorganisms
- Stabilized organic matter acts like a sponge and can absorb 2-6 times its weight in water

Improving Soil Health

Long-term Thinking and Strategy

Basic Methods (Toolbox)

- Tillage Management (Reducing tillage)
- Cover Cropping
- Crop Rotation
- Organic Matter Addition & Management

Merits/demerits of using proprietary products from different vendors

- Beware of "magical products"
- Query the science of the product
- Ask for University research on the product
- If you are convinced of the science, test out the product in a way that you can see the difference
- Evaluate the cost to benefit ratio of the product, especially those that need to be applied yearly

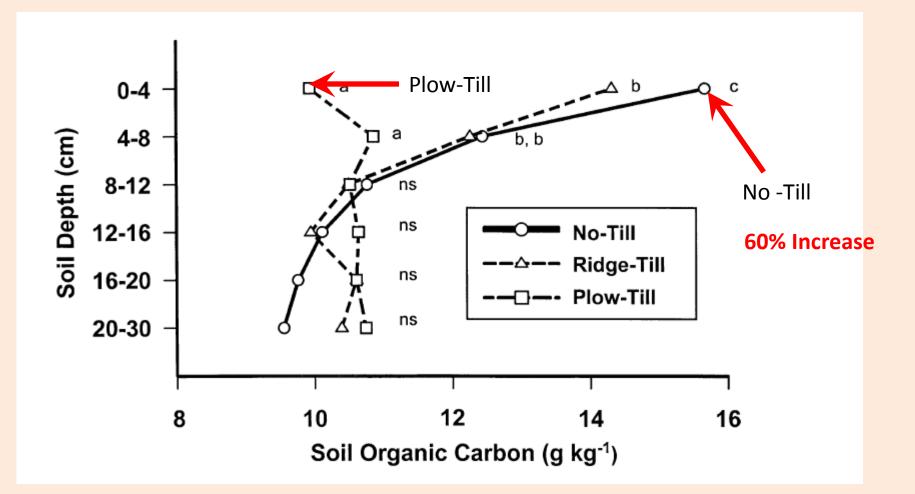

Reduced Tillage Goals

Enhance soil quality

Conserve soil organic matter

Conserve soil moisture

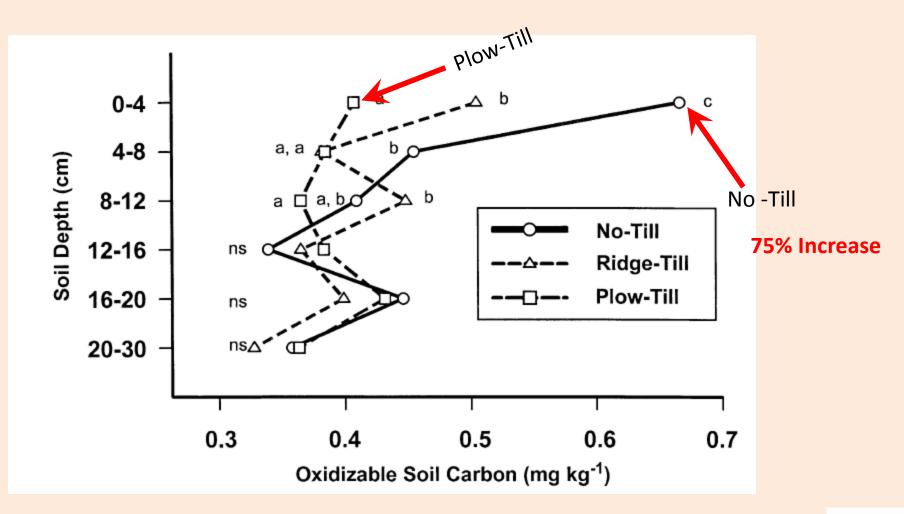
- Reduce erosion
- Reduce fuel use
- Optimize weed control
- Maintain yields



Reduced Tillage Facts

- Depends on equipment (capital intensive)
- Depends on crop (works better for large seeds)
- Little difference between full width tillage and reduced tillage in terms of yield (short-term)
- Labor savings during early season field prep.
- Investment in long term soil health

Tillage and Organic Carbon



Soil organic carbon by depth after 9 years of no-till, ridge-till or plow-till treatment

L.M. Zibilske et al. / Soil & Tillage Research 66 (2002) 153–163

Tillage and Active Carbon

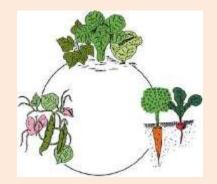
Oxidizable carbon by depth after 9 years of no-till, ridge-till or plow-till treatment

L.M. Zibilske et al. / Soil & Tillage Research 66 (2002) 153–163

No-till wheat after corn silage Vado, NM

Strip-till after corn silage Vado, NM

Cover Crops

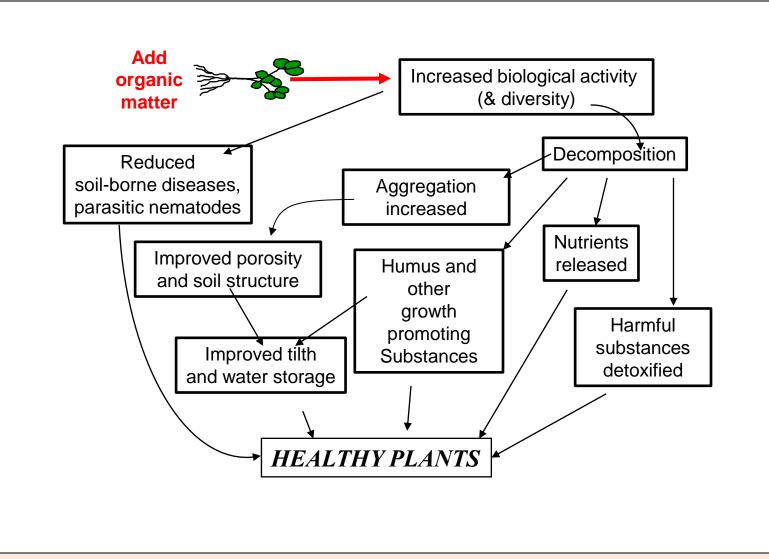

- Cover crops can help prevent erosion
- reduce leaching of nutrients by serving as catch crops
- can help alleviate soil compaction
- can help suppress perennial and winter annual weeds
- can add organic matter to the soil

- **Important:** what is your goal?
 - selection of proper cover crop
 - seeding time
 - good management techniques

Crop Rotation

- Good crop rotation can break disease cycle
- decrease pest pressure from insects, weeds and diseases

- enhances soil biological diversity
- enhances sustainable cropping systems


Organic Matter

- Adding organic matter improves nutrient supply of the soil
- tends to reduce pesticide toxicity
- increases microbial degradation of pesticides
- increases soil biological activities
- improves soil structure
- improves water holding capacity
- prevents soil erosion

Adding organic matter results in many changes.

Modified from Drinkwater and Oshins, 1998.

Animal Manures

Cow manure

- Good general nutrient source (especially K)
- OM benefit depends on amount of bedding
- Can carry weed seed
- Poultry manure
 - Potent source N, P, Zn, and lime
 - Organic matter addition is relatively low
 - Best if composted
- Horse manure
 - Heavily bedded with wood shavings
 - Nitrogen availability can be a problem in the first year

Peat Moss

- Improves soil moisture retention
- Minor improvement to nutrient holding capacity
- Provides <u>negligible</u> nutrient benefit
- High proportions may make soil <u>hydrophobic</u>

Materials to Avoid

- Sawdust, wood shavings, wood chips
 - very high carbon/nitrogen ratio
 - will tie up <u>all</u> available N during breakdown (immobilization)

- Worst when tilled in
 - minor detrimental effect if used as mulch

Nutrient content of organic materials

Organic Material	Nutrient Content*		Fertilizer Pounds Needed for 1 Pound of Nutrient**	
	Percent N	Percent P ₂ O ₅	N	P ₂ O ₅
Alfalfa hay	2.3	0.3	43	333
Blood meal	12.0	3.0	8	33.3
Bone meal	3.0	28.0	33	3.5
Compost, garden	1.0	0.2	100	500
Cottonseed meal	7.0	1.0	14	100
Fish meal	12.0	3.0	8	33
Manure - hen	1.1	0.8	98	125
Manure - horse	0.7	0.3	143	333
Manure - pig	0.5	0.3	200	333
Manure - rabbit	2.4	1.4	42	71
Manure - sheep	0.7	0.3	143	333
Manure - steer	0.7	0.3	143	333
Peanut shells	3.6	0.7	28	143
Rock phosphate	0.0	0.5	0	200
Sewage sludge	5.0	3.0	20	33
Sunflower seed oil	5.5	1.0	18	13
Wood ashes	Do Not Use	Do Not Use	Do Not Use	Do Not Use

